Abstract

Airborne LiDAR collected during the period 1998–2010 and differential GPS surveys conducted over 2008–2013 show recent reactivation and movement of a large deep-seated coastal landslide at San Onofre State Beach, San Diego County, California. The overall slide complex extends about 700m alongshore, 150m inland, and an unknown distance offshore. Differencing digital elevation models and tracking field monuments (benchmarks) provide time series of quantitative topographic landslide changes and new insight in to the slide motion sequences and mechanics. The slide contains several distinct primary and secondary regions moving and deforming at different rates. Primary slide motion includes slow seaward translational motion, rotational slipping, and upward offshore movement. Secondary processes of basal wave erosion and new inland cliffline failures contribute to primary landslide destabilization. The landslide exhibits lithologic and structural controls, is driven by a combination of marine and subaerial processes, influences local beach morphology, and deviates from typical southern California coastal cliff processes which mostly involve shallow landslides and topples. Large-scale, cross-shore slide rotation has recently created new nearshore reefs. Eroded cliff sediments provide a local beach sand source and probably influence local nearshore ecosystems. All known time periods of major historical landslide activity were preceded by elevated seasonal rainfall and analysis suggests elevated rainfall generated primary slide motion as opposed to wave action. As of spring 2013, landslide activity has slowed, but continued positive feedbacks including toe removal by wave activity suggest that future landsliding will probably threaten coastal infrastructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.