Abstract

Recent rapid Arctic sea ice loss was documented as combined results from anthropogenic forcing and climate system internal variability. However, the role of internal variability is not well understood. Here, we propose that the Asian-Pacific Oscillation (APO), an intrinsic atmospheric mode featuring out-of-phase variations in upper-tropospheric temperatures between Asia and the North Pacific, is one driver for autumn sea ice variability in the eastern Arctic. The positive summer APO favors warming of the mid-latitude North Atlantic sea surface temperatures. This warming persists to autumn and in turn triggers strong anticyclonic anomalies over the Barents-Kara-Laptev Seas and weak lower-tropospheric cyclonic anomalies over the East Siberian Sea, enhancing moisture transport into the eastern Arctic. Such changes consequently increase lower-tropospheric humidity, downwelling longwave radiation, and surface air temperature in the eastern Arctic, thereby melting sea ice. Hence, a recent tendency of the summer APO towards the positive phase accelerates autumn sea ice loss in the eastern Arctic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call