Abstract

$B$ physics plays important roles in searching for the new physics (NP) beyond the standard model (SM). Recently, some deviations between experimental data and SM predictions were reported, namely $R(D^{(*)})$, $P_5^\prime$ and $R_{K^{(*)}}$ anomalies. If these anomalies were further confirmed in future, they would be unambiguous hints of NP. Theoretically, in order to explain these anomalies, a large number of models have been proposed, such as models including leptoquark or $Z^\prime$. However, these new particles have not been discovered directly in LHC. Moreover, the models should pass the examination of $B_s\to \mu^+\mu^-$ and $B_s^0-\bar B_s^0$ mixing. In future, the analysis of data taken during the ongoing Run 2 of the LHC and the forthcoming Belle-II will present new insight both into the observables of interest and into new strategies to control uncertainties. Theoretically, the existed models should be further tested; and more NP models are welcomed to explain these anomalies simultaneously without affecting other measurements consistent with SM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call