Abstract

BackgroundSince the 1980s, populations of the Asian tiger mosquito Aedes albopictus have become established in south-eastern, eastern and central United States, extending to approximately 40°N. Ae. albopictus is a vector of a wide range of human pathogens including dengue and chikungunya viruses, which are currently emerging in the Caribbean and Central America and posing a threat to North America.MethodsThe risk of Ae. albopictus expanding its geographic range in North America under current and future climate was assessed using three climatic indicators of Ae. albopictus survival: overwintering conditions (OW), OW combined with annual air temperature (OWAT), and a linear index of precipitation and air temperature suitability expressed through a sigmoidal function (SIG). The capacity of these indicators to predict Ae. albopictus occurrence was evaluated using surveillance data from the United States. Projected future climatic suitability for Ae. albopictus was obtained using output of nine Regional Climate Model experiments (RCMs).ResultsOW and OWAT showed >90% specificity and sensitivity in predicting observed Ae. albopictus occurrence and also predicted moderate to high risk of Ae. albopictus invasion in Pacific coastal areas of the Unites States and Canada under current climate. SIG also well predicted observed Ae. albopictus occurrence (ROC area under the curve was 0.92) but predicted wider current climatic suitability in the north-central and north-eastern United States and south-eastern Canada. RCM output projected modest (circa 500 km) future northward range expansion of Ae. albopictus by the 2050s when using OW and OWAT indicators, but greater (600–1000 km) range expansion, particularly in eastern and central Canada, when using the SIG indicator. Variation in future possible distributions of Ae. albopictus was greater amongst the climatic indicators used than amongst the RCM experiments.ConclusionsCurrent Ae. albopictus distributions were well predicted by simple climatic indicators and northward range expansion was predicted for the future with climate change. However, current and future predicted geographic distributions of Ae. albopictus varied amongst the climatic indicators used. Further field studies are needed to assess which climatic indicator is the most accurate in predicting regions suitable for Ae. albopictus survival in North America.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-014-0532-4) contains supplementary material, which is available to authorized users.

Highlights

  • Since the 1980s, populations of the Asian tiger mosquito Aedes albopictus have become established in south-eastern, eastern and central United States, extending to approximately 40°N

  • In this study we aimed to evaluate the potential of this mosquito species to become established more widely in the United States and Canada under current and future climatic conditions, and provide risk of transmission of chikungunya and dengue that are currently exotic to Canada and most of the United States

  • overwintering conditions (OW) provides a four point ordinal scale of suitability for Ae. albopictus: (0) very unsuitable if TJan is lower than 0°C and Pann is below 500 mm, followed by the increasing levels of suitability: (1) moderate when 0°C ≤ TJan < 1°C and 500 mm ≤ Pann

Read more

Summary

Introduction

Since the 1980s, populations of the Asian tiger mosquito Aedes albopictus have become established in south-eastern, eastern and central United States, extending to approximately 40°N. Ae. albopictus is a vector of a wide range of human pathogens including dengue and chikungunya viruses, which are currently emerging in the Caribbean and Central America and posing a threat to North America. The Asian Tiger mosquito Aedes albopictus Skuse (1894), is an aggressive diurnal-biting insect that is associated with the transmission of over 20 human pathogens including arboviruses and Dirofilaria spp. nematodes [1,2]. Native to South-eastern Asia, Ae. albopictus naturally occurs in a wide range of habitats including coastland, forests, grasslands, urban areas, water courses and wetlands, and has high ecological flexibility being found in densely vegetated rural areas, agricultural areas as well as urban and sub-urban settings. International spread is favoured by its cold-tolerant eggs and capacity to adapt (in terms of diapause of eggs) to temperate environments [2,5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call