Abstract
Observational and reanalysis datasets reveal a northward shift of the convective regions over northern Africa in summer and an eastward shift in winter in the last four decades, with the changes in the location and intensity of the thermal lows and subtropical highs also modulating the dust loading and cloud cover over the Middle East and North Africa region. A multi-model ensemble from ten models of the Coupled Model Intercomparison Project—sixth phase gives skillful simulations when compared to in-situ measurements and generally captures the trends in the ERA-5 data over the historical period. For the most extreme climate change scenario and towards the end of the twenty-first century, the subtropical highs are projected to migrate poleward by 1.5°, consistent with the projected expansion of the Hadley Cells, with a weakening of the tropical easterly jet in the summer by up to a third and a strengthening of the subtropical jet in winter typically by 10% except over the eastern Mediterranean where the storm track is projected to shift polewards. The length of the seasons is projected to remain about the same, suggesting the warming is likely to be felt uniformly throughout the year.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.