Abstract

AbstractRecent analyses of Amazon runoff and gridded precipitation data suggest an intensification of the hydrological cycle over the past few decades in the following sense: wet season precipitation and peak river runoff (since ∼1980) as well as annual mean precipitation (since ∼1990) have increased, while dry season precipitation and minimum runoff have slightly decreased. There has also been an increase in the frequency of anomalously severe floods and droughts. To provide context for the special issue on Amazonia and its forests in a warming climate we expand here on these analyses. The contrasting recent changes in wet and dry season precipitation have continued and are generally consistent with changes in catchment‐level peak and minimum river runoff as well as a positive trend of water vapor inflow into the basin. Consistent with the river records, the increased vapor inflow is concentrated to the wet season. Temperature has been rising by 0.7°C since 1980 with more pronounced warming during dry months. Suggestions for the cause of the observed changes of the hydrological cycle come from patterns in tropical sea surface temperatures (SSTs). Tropical and North Atlantic SSTs have increased rapidly and steadily since 1990, while Pacific SSTs have shifted during the 1990s from a positive Pacific Decadal Oscillation (PDO) phase with warm eastern Pacific temperatures to a negative phase with cold eastern Pacific temperatures. These SST conditions have been shown to be associated with an increase in precipitation over most of the Amazon except the south and southwest. If ongoing changes continue, we expect forests to continue to thrive in those regions where there is an increase in precipitation with the exception of floodplain forests. An increase in flood pulse height and duration could lead to increased mortality at higher levels of the floodplain and, over the long term, to a lateral shift of the zonally stratified floodplain forest communities. Negative effects on forests are mainly expected in the southwest and south, which have become slightly drier and hotter, consistent with tree mortality trends observed at the RAINFOR Amazon forest plot network established in the early 1980s consisting of approximately 150 regularly censused 1ha plots in intact forests located across the whole basin.

Highlights

  • The extensive tropical rainforests of Amazonia affect the functioning of the Earth’s climate through the exchange of large amounts of water, energy, and carbon with the atmosphere [e.g., Gash and Nobre, 1997; Silva-Dias et al, 2002; Keller et al, 2004, 2009]

  • The proposed mechanism for an increase in annual mean precipitation is broadly consistent with recent simulations of the Climate Model Intercomparison Project 5 analyzed by Kitoh et al [2013], which suggest a future increase of precipitation for the Amazon basin and other tropical monsoonal regions concentrated in the wet season

  • To examine whether our expectations of terra firme forest response to recent large-scale climate patterns is supported by observations, we analyzed data of biomass dynamics from the RAINFOR inventory plot network [Peacock et al, 2007] in the Amazon basin with sites shown in Figure 4

Read more

Summary

Introduction

The extensive tropical rainforests of Amazonia affect the functioning of the Earth’s climate through the exchange of large amounts of water, energy, and carbon with the atmosphere [e.g., Gash and Nobre, 1997; Silva-Dias et al, 2002; Keller et al, 2004, 2009]. The proposed mechanism for an increase in annual mean precipitation is broadly consistent with recent simulations of the Climate Model Intercomparison Project 5 analyzed by Kitoh et al [2013], which suggest a future increase of precipitation for the Amazon basin and other tropical monsoonal regions concentrated in the wet season (see, e.g., their Figure 10). Precipitation in these simulations is increasing despite a slight weakening of the atmospheric overturning circulation (Hadley and Walker cells) [Allen and Ingram, 2002]. In the second part of the paper we will discuss what the observed changes may mean for forest vegetation in the nearer future

Recent Amazon Climate Patterns
Possible Implications for Amazon Humid Forests
Findings
Summary and Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call