Abstract
In the last two decades, metal organic frameworks (MOFs) have gained significant attention as adsorbent and membrane materials for gas separations. Due to the large number and diversity of existing MOFs, identifying the best MOF materials for a gas separation of interest is very challenging. High-throughput computational screening studies have played an important role in accurately assessing adsorption and membrane-based gas separation performances of MOFs in a time-efficient manner. Computational methods, mainly molecular simulations, are invaluable in narrowing down the number of promising MOFs from thousands to tens and directing the future experimental efforts, resources, and time to the best materials. In this review, we addressed the recent advances in high-throughput computational screening methods used for MOFs and described how to use the results of computer simulations to predict various adsorbent and membrane performance metrics of MOFs. Current large-scale computational studies on using MOFs for different gas separations were then reviewed. Finally, both the opportunities and challenges in the field were discussed to shed light on future MOF studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.