Abstract
Sodium-ion batteries (SIBs) are expected to replace lithium-ion batteries (LIBs) as a new generation of energy storage devices due to their abundant sodium reserves and low cost. Among the anode materials of SIBs, transition metal chalcogenides (TMXs) have attracted much attention because of their large layer spacing, narrow band gap, and high theoretical capacity. However, in practical applications, TMXs face problems, such as structural instability and poor electrical conductivity. In this review, the research progress and challenges of TMXs in SIBs in recent years are summarized, the application of nanostructure design, defect engineering, cladding engineering, and heterogeneous construction techniques and strategies in improving the electrochemical performance of TMXs anode are emphatically introduced, and the storage mechanism of sodium is briefly summarized. Finally, the application and development prospects of TMX anodes in electrochemical energy storage are discussed and prospected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.