Abstract
We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then describe in a unified framework, using the Eulerian formulation, global existence results for three- and two-dimensional gravity waves, and our joint result (with Deng and Pausader) on global regularity for the gravity-capillary model in three dimensions. We conclude this review with a short discussion about the formation of singularities and give a few additional references to other interesting topics in the theory.This article is part of the theme issue 'Nonlinear water waves'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.