Abstract

In recent years, the use of integrated technologies for applications in the field of quantum information processing and communications has made great progress. The resulting devices feature valuable characteristics such as scalability, reproducibility, low cost and interconnectivity, and have the potential to revolutionize our computation and communication practices in the future, much in the way that electronic integrated circuits have drastically transformed our information processing capacities since the last century. Among the multiple applications of integrated quantum technologies, this review will focus on typical components of quantum communication systems and on overall integrated system operation characteristics. We are interested in particular in the use of photonic integration platforms for developing devices necessary in quantum communications, including sources, detectors and both passive and active optical elements. We also illustrate the challenges associated with performing quantum communications on chip, by using the case study of quantum key distribution—the most advanced application of quantum information science. We conclude with promising perspectives in this field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.