Abstract
To satisfy the need for catalyst materials with high activity, selectivity, and stability for energy conversion, material design and discovery guided by theoretical insights are a necessity. In the past decades, the rise in theoretical investigations into the properties of catalyst materials, reaction mechanisms, and catalyst design principles has shed light on the catalysis field. Quantitative structure–activity relationships have been developed through incorporating spectroscopic simulations, electronic structure calculations, and reaction mechanistic studies. In this review, we report the state-of-the-art computational approaches to catalyst materials characterization for supported single-atom and cluster catalysts utilizing spectroscopic simulations, i.e., XANES simulation, and material properties investigation via electronic-structure calculations. Furthermore, approaches regarding reaction mechanisms, focusing on active site heterogeneity, are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.