Abstract

The fast growth of electrochemical energy storage (EES) systems necessitates using innovative, high-performance electrode materials. Among the various EES devices, rechargeable batteries (RBs) with potential features like high energy density and extensive lifetime are well suited to meet rapidly increasing energy demands. Layered transition metal dichalcogenides (TMDs), typical two dimensional (2D) nanomaterial, are considered auspicious materials for RBs because of their layered structures and large specific surface areas (SSA) that benefit quick ion transportation. This review summarizes and highlights recent advances in TMDs with improved performance for various RBs. Through novel engineering and functionalization used for high-performance RBs, we briefly discuss the properties, characterizations, and electrochemistry phenomena of TMDs. We summarised that engineering with multiple techniques, like nanocomposites used for TMDs receives special attention. In conclusion, the recent issues and promising upcoming research openings for developing TMDs-based electrodes for RBs are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call