Abstract

Salt stress is the major limiting factor in agriculture and portraits a major challenge to food security. The adverse effect of salt stress is expressed on whole plant levels. Plants have acquired various processes that functions to balance cellular hyperosmolarity and ion disequilibrium in an effort to combat salt stress. These processes occur due to significant changes in the gene expression that in turn bring about changes in plant metabolism. These metabolic changes help the plant to adapt to disorganized metabolic homeostasis. It has been observed that adverse growth conditions have impact on the synthesis of secondary plant products or metabolites that help in plant defence. The diverse nature of these metabolites has lead to the development of ‘Metabolomics’. The metabolite fingerprinting and profiling approaches provides accurate identification and quantification of stressed sample even before they can bring about change(s) in the transcriptome or proteome. Using metabolic profile changes as a marker for stress physiology, metabolic movements and factors can be analysed in combination with other ‘omic’ techniques, such as transcriptomics. Revealed analyses of salt acclimation effects and related stress factors to salinity stress may provide help in crop breeding programs to develop salt tolerance varieties. In this review, we will focus on recent advancements and application of metabolomics in plants under salinity stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call