Abstract

Solar biomass hybridization is a promising energy technique for efficient utilization while mitigating the disadvantages associated with both biomass and solar energy source. In conventional concentrating solar power (CSP) systems, the contribution of solar energy is relatively low, merely supplementing the system with low/medium temperature air/steam. This paper aimed to emphasize the improvement of solar heat share, particularly in the topping cycle of the hybrid system. The solar aided processes, either directly generating superheated air/steam or direct gasification are thermodynamically favorable at very high temperatures, in excess of 800 °C. Unfortunately, this temperature is unattainable in conventional CSP systems using molten salt. Accordingly, the integration of solar power tower (SPT) with solid particle fluidized system in a beam down configuration has been proposed for the hybrid solar-biomass systems. Studies of such integration system presented challenges in terms of operating temperature, continuous supply/syngas production and scaling of reactor, particularly for circulating fluidized bed (CFB). The selection of solid particle and gas flow rate are among the governing parameters for high operating temperature and effective utilization of solar heat. The development of high temperature hybrid solar-biomass system is anticipated for higher solar-to-fuel conversion efficiencies, minimizing the direct combustion of biomass and reduce the emission of greenhouse gas (GHG) emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call