Abstract
Emerging materials integrated into high performance flexible electronics to detect environmental contaminants have received extensive attention worldwide. The accurate detection of widespread organophosphorus (OP) compounds in the environment is crucial due to their high toxicity even at low concentrations, which leads to acute health concerns. Therefore, developing rapid, highly sensitive, reliable, and facile analytical sensing techniques is necessary to monitor environmental, ecological, and food safety risks. Although enzyme-based sensors have better sensitivity, their practical usage is hindered due to their low specificity and stability. Therefore, among various detection methods of OP compounds, this review article focuses on the progress made in the development of enzyme-free electrochemical sensors as an effective nostrum. Further, the novel materials used in these sensors and their properties, synthesis methodologies, sensing strategies, analytical methods, detection limits, and stability are discussed. Finally, this article summarizes potential avenues for future prospective electrochemical sensors and the current challenges of enhancing the performance, stability, and shelf life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.