Abstract

Water-soluble vitamins are essential micronutrients in diets and crucial to biochemical functions in human body physiology. These vitamins are essential for healthy diets and have a preventive role against diseases. However, their limitations associated with high sensitivity against external conditions (temperature, light, pH, moisture, oxygen) can lead to degradation during processing and storage. In this context, microencapsulation may overcome these conditions, protecting a biomolecule’s bioavailability, stability, and effectiveness of delivery. This technique has been used to produce delivery systems based on polymeric agents that surround the active compounds. The present review focuses on the most relevant topics of water-soluble vitamin encapsulation using promising methods to produce delivery vehicles—electrohydrodynamic (electrospinning and electrospraying) and spray-drying techniques. An overview of the suitable structures produced by these processes is provided. The review introduces the general principles of the methods, advantages, disadvantages, and involved parameters. A brief list of the used physicochemical techniques for the systems’ characterization is discussed in this review. Electrospinning and spray-drying techniques are the focus of this investigation in order to guarantee vitamins’ bioaccessibility and bioavailability. Recent studies and the main encapsulating agents used for these micronutrients in both processes applied to functional food and nutraceutical areas are highlighted in this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.