Abstract

Ticks are haematophagous arthropods with unique molecular mechanisms for digesting host blood meal while acting as vectors for various pathogens of public health significance. The tick's pharmacologically active saliva plays a fundamental role in modulating the host's immune system for several days to weeks, depending on the tick species. The vector tick has also developed sophisticated molecular mechanisms to serve as a competent vector for pathogens, including the spotted fever group (SFG) rickettsiae. Evidence is still inadequate concerning tick-rickettsiae-host interactions and saliva-assisted transmission of the pathogen to the mammalian host. Rickettsia parkeri, of the SFG rickettsia, can cause a milder version of Rocky Mountain spotted fever known as American Boutonneuse fever. The Gulf Coast tick (Amblyomma maculatum) often transmits this pathogenic rickettsia in the USA. This review discusses the knowledge gap concerning tick-rickettsiae-host interactions by highlighting the SFG rickettsia and the Ammaculatum model system. Filling this knowledge gap will provide a better understanding of the tick-rickettsiae-host interactions in disease causation, which will be crucial for developing effective methods for preventing tick-borne diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.