Abstract
To provide an update on recent advances made in our mechanistic and pathophysiological understanding of the rare human disease Sitosterolemia, the role of ABCG5/ABCG8 in sterol trafficking and how newer data implicate a more wider role in the body. Sitosterolemia is caused by a genetic defect of sterolins (ABCG5/ABCG8) mapped to the STSL locus. Polymorphic variations in STSL have been linked to lipid levels and gallstone disease in whites. Newer studies now link this locus to a more diverse ethnic group for gallstone disease, susceptibility to biliary cancer, and show variants that alter sterolin function. Intriguingly, carriers of a mutant allele seem to show protection against carotid wall disease. Although the 'promoter' region of the STSL is minimal, regulatory regions responsive to liver X receptor have remained elusive, but no longer; two intronic regions in ABCG8 have now been identified. Xenosterol accumulation leads to loss of abdominal fat, infertility, and premature death. Xenosterol accumulation in mouse platelet membranes leads to platelet hyperactivation, increased microparticle formation, and reduced αIIbβ3 surface expression. In humans, phytosterols may promote liver injury in parenteral nutrition-associated liver disease. Progress in understanding sterolin function is beginning to show that xenosterols can be toxic and are involved on pathogenesis, and the role of ABCG5/ABCG8 may extend into other metabolic processes by altering intracellular sterol metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.