Abstract

Nicotinic acetylcholine receptors (nAChRs), members of the Cys-loop ligand-gated ion channels (LGICs) superfamily, are involved in signal transduction upon binding of the neurotransmitter acetylcholine or exogenous ligands, such as nicotine. nAChRs are pentameric assemblies of homologous subunits surrounding a central pore that gates cation flux, and are expressed at the neuromuscular junction and in the nervous system and several nonneuronal cell types. The 17 known nAChR subunits assemble into a variety of pharmacologically distinct receptor subtypes. nAChRs are implicated in a range of physiological functions and pathophysiological conditions related to muscle contraction, learning and memory, reward, motor control, arousal, and analgesia, and therefore present an important target for drug research. Such studies would be greatly facilitated by knowledge of the high-resolution structure of the nAChR. Although this information is far from complete, important progress has been made mainly based on electron microscopy studies of Torpedo nAChR and the high-resolution X-ray crystal structures of the homologous molluscan acetylcholine-binding proteins, the extracellular domain of the mouse nAChR alpha1 subunit, and two prokaryotic pentameric LGICs. Here, we review some of the latest advances in our understanding of nAChR structure and gating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.