Abstract

Stem cell-based regenerative medicine has attracted tremendous attention for its great potential to treat numerous incurable diseases. Tracking and understanding the fate and regenerative capabilities of transplanted stem cells is vital for improving the safety and therapeutic efficacy of stem cell-based therapy, therefore accelerating the clinical application of stem cells. Fluorescent nanoparticles (NPs) have been widely used for in vivo tracking of the transplanted stem cells. Among these fluorescent NPs, near-infrared (NIR) NPs have greatly improved the sensitivity, tissue penetration depth, spatial and temporal resolutions of the fluorescence imaging-based stem cell tracking technologies due to the reduced absorption, scattering, and autofluorescence of NIR fluorescence in tissues. Here, this review summarizes the recent studies regarding the tracking of transplanted stem cells using NIR NPs and emphasizes the recent advances of fluorescence imaging in the second NIR window (NIR-II, 1000-1700 nm). Furthermore, the challenges and future prospects of the NIR NP-based technologies are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.