Abstract

Abstract It is increasingly apparent that faults are typically not discrete planes but zones of deformed rock with a complex internal structure and three-dimensional geometry. In the last decade this has led to renewed interest in the consequences of this complexity for modelling the impact of fault zones on fluid flow and mechanical behaviour of the Earth's crust. A number of processes operate during the development of fault zones, both internally and in the surrounding host rock, which may encourage or inhibit continuing fault zone growth. The complexity of the evolution of a faulted system requires changes in the rheological properties of both the fault zone and the surrounding host rock volume, both of which impact on how the fault zone evolves with increasing displacement. Models of the permeability structure of fault zones emphasize the presence of two types of fault rock components: fractured conduits parallel to the fault and granular core zone barriers to flow. New data presented in this paper on porosity–permeability relationships of fault rocks during laboratory deformation tests support recently advancing concepts which have extended these models to show that poro-mechanical approaches (e.g., critical state soil mechanics, fracture dilatancy) may be applied to predict the fluid flow behaviour of complex fault zones during the active life of the fault. Predicting the three-dimensional heterogeneity of fault zone internal structure is important in the hydrocarbon industry for evaluating the retention capacity of faults in exploration contexts and the hydraulic behaviour in production contexts. Across-fault reservoir juxtaposition or non-juxtaposition, a key property in predicting retention or across-fault leakage, is strongly controlled by the three-dimensional complexity of the fault zone. Although algorithms such as shale gouge ratio greatly help predict capillary threshold pressures, quantification of the statistical variation in fault zone composition will allow estimations of uncertainty in fault retention capacity and hence prospect reserve estimations. Permeability structure in the fault zone is an important issue because bulk fluid flow rates through or along a fault zone are dependent on permeability variations, anisotropy and tortuosity of flow paths. A possible way forward is to compare numerical flow models using statistical variations of permeability in a complex fault zone in a given sandstone/shale context with field-scale estimates of fault zone permeability. Fault zone internal structure is equally important in understanding the seismogenic behaviour of faults. Both geometric and compositional complexities can control the nucleation, propagation and arrest of earthquakes. The presence and complex distribution of different fault zone materials of contrasting velocity-weakening and velocity-strengthening properties is an important factor in controlling earthquake nucleation and whether a fault slips seismogenically or creeps steadily, as illustrated by recent studies of the San Andreas Fault. A synthesis of laboratory experiments presented in this paper shows that fault zone materials which become stronger with increasing slip rate, typically then get weaker as slip rate continues to increase to seismogenic slip rates. Thus the probability that a nucleating rupture can propagate sufficiently to generate a large earthquake depends upon its success in propagating fast enough through these materials in order to give them the required velocity kick. This propagation success is hence controlled by the relative and absolute size distributions of velocity-weakening and velocity-strengthening rocks within the fault zone. Statistical characterisation of the distribution of such contrasting properties within complex fault zones may allow for better predictive models of rupture propagation in the future and provide an additional approach to earthquake size forecasting and early warnings.

Highlights

  • Stage II is aimed at processing of field data and includes activities in four groups (II.1–II.4) as follows: Group II.1: construction of circle diagrams, specification of characteristics of joint systems and their typical scatters (Fig. 4, А), identification of simple paragenesises, and determination of dynamic settings of their formation (Table 1), evaluation of densities and complexity of the joint networks, analysis of their spacial patterns within the site under mapping, and identification of the most intensively destructed zones in the rock massif (Fig. 2, Б–В)

  • Group II.4: comparison between diagrams of fault poles of local ranks with reference patterns selected according to the availability of conjugated pairs of fractures (Fig. 9, Б–Г); based on the above comparison, decision making on potential formation of a paragenesis of local faults in the strike-slip, normal and reserve/thrust fault zones (Fig. 9, Д–Ж), and delineation of boundaries of such zones in the schematic map by connecting the observation sites with similar solutions (Fig. 7, Л–Н)

  • Stage III is aimed at interpreting and includes comprehensive analyses of mapping results and priori information, construction of a final scheme of the fault zones showing their subordination by ranks (Fig. 7, О) and schemes of fault zones for various structure formation stages, showing types of faults and specific features of their internal patterns, i.e. definition of the peripheral sub-zone, sub-zones of fractures of the 2nd order and, if established, the sub-zone of the major fault (Fig. 7, Л–Н)

Read more

Summary

ВВЕДЕНИЕ

В первой части описания спецкартирования было показано [Seminsky, 2014], что этот геологоструктурный метод позволяет осуществлять картирование разломной структуры и реконструкцию полей тектонических напряжений земной коры на базе парагенетического анализа массовых замеров трещин, характеризующихся отсутствием видимых смещений и повсеместным распространением в горных породах. Полученные таким способом решения о присутствии в пункте наблюдения разломной зоны определенного типа и ориентировки выносятся в соответствующем месте на схему территории, после чего по точкам с однотипными парагенезисами фиксируется положение разломных зон. Кроме составленной описанным способом схемы разломной структуры параллельно устанавливаются типы полей напряжений, в которых на отдельных этапах формировались или активизировались ее отдельные элементы. Для этого проводится поранговый анализ выделенных разломных зон, в ходе которого все полученные ранее локальные решения о их присутствии в отдельных пунктах массового замера сопоставляются по типу и ориентации с членами идеализированных парагенезисов разломов, формирующихся при сжатии (надвиги и взбросы), растяжении (сбросы) или сдвиге (правые и левые сдвиги). В заключение спецкартирования обратным ходом могут быть составлены схемы разломных зон для каждого из главных этапов формирования структуры. Второстепенная задача – установить главные черты поперечной зональности внутреннего строения разломных зон на основе применения тектонофизического подхода к интерпретации результатов спецкартирования на мысе Улирба в Приольхонье (Западное Прибайкалье)

РЕГИОНАЛЬНАЯ ТЕКТОНИЧЕСКАЯ ОБСТАНОВКА И
СОДЕРЖАНИЕ ГЛАВНЫХ ЭТАПОВ СПЕЦКАРТИРОВАНИЯ
ПОДГОТОВИТЕЛЬНЫЙ ЭТАП
ЭТАП ОБРАБОТКИ
Построение диаграмм и выделение простых парагенезисов трещин
Выявление разломных зон локального ранга
Выявление разломных зон трансрегионального ранга
II III II
Выявление разломных зон регионального ранга
ЭТАП ИНТЕРПРЕТАЦИИ
ПЕРСПЕКТИВЫ И ОСОБЕННОСТИ ПРИМЕНЕНИЯ
Findings
ЗАКЛЮЧЕНИЕ

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.