Abstract

In 1881, Rainer Ludwig Claisen discovered a carbon-carbon bond-forming reaction between two esters or an ester and a carbonyl compound in the presence of a base. The reaction leads to β-keto esters or β-diketones respectively, and it was later named Claisen condensation, or classic Claisen condensation in the former case, and mixed ('crossed') Claisen condensation in the latter. The reaction now sits firmly in the repertoire of organic synthesis as one of the earliest name reactions. In continuing research, it became evident that the products of this aldol type reaction can be cleaved to produce starting materials. Namely, β-diketone moieties were reported to undergo the retro-Claisen reaction, which is β-dicarbonyl carbon-carbon bond cleavage. Although it was first described as a side, or even parasitic reaction, it was later incorporated into the body of carbon-carbon base-promoted cleavage reactions. Moreover, numerous recent reports have demonstrated the wide selection of methodologies that can be used in these transformations. The scope ranges from various base-mediated or acid-mediated reactions and biocatalyzed transformations, and it extends to recently discovered homogeneous catalyzed reactions. Interestingly, further synthetic applications of retro-Claisen reaction are now being realized, and this is reflected in syntheses of natural products and other fine chemicals. This reaction is nowadays a useful synthetic tool and this review surveys and consolidates the recent literature on the retro-Claisen reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.