Abstract
Selective laser sintering (SLS) is an additive manufacturing process that has shown promise in the production of medical devices, including hip cups, knee trays, dental crowns, and hearing aids. SLS-based 3D-printed dosage forms have the potential to revolutionise the production of personalised drugs. The ability to manipulate the porosity of printed materials is a particularly exciting aspect of SLS. Porous tablet formulations produced by SLS can disintegrate orally within seconds, which is challenging to achieve with traditional methods. SLS also enables the creation of amorphous solid dispersions in a single step, rather than the multi-step process required with conventional methods. This review provides an overview of 3D printing, describes the operating mechanism and necessary materials for SLS, and highlights recent advances in SLS for biomedical and pharmaceutical applications. Furthermore, an in-depth comparison and contrast of various 3D printing technologies for their effectiveness in tissue engineering applications is also presented in this review.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.