Abstract

Background. Current advances in genetic technology continue to expand the list of medical conditions associated with autism. Clinicians have to identify specific autistic-related syndromes, and to provide tailored counseling. The aim of this study is to elucidate recent advances in autism research that offer important clues into pathogenetic mechanisms of syndromic autism and relevant implications for clinical practice. Data Sources. The PubMed database was searched with the keywords “autism” and “chromosomal abnormalities,” “metabolic diseases,” “susceptibility loci.” Results. Defined mutations, genetic syndromes, and metabolic diseases account for up to 20% of autistic patients. Metabolic and mitochondrial defects may have toxic effects on the brain cells, causing neuronal loss and altered modulation of neurotransmission systems. Alterations of the neocortical excitatory/inhibitory balance and perturbations of interneurons' development represent the most probable pathogenetic mechanisms underlying the autistic phenotype in Fragile X-Syndrome and Tuberous Sclerosis Complex. Chromosomal abnormalities and potential candidate genes are strongly implicated in the disruption of neural connections, brain growth, and synaptic/dendritic morphology. Conclusion. Metabolic testing may be appropriate if specific symptoms are present. High-resolution chromosome analysis may be recommended if a specific diagnosis is suspected because of obvious dysmorphisms. Identifying cryptic chromosomal abnormalities by whole genome microarray analysis can increase the understanding of the neurobiological pathways to autism.

Highlights

  • Autism and related autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental disorders behaviorally defined by significant deficits in social interaction and communication and by the presence of restricted interests and repetitive behaviors [1]

  • A direct role in modulation of dopaminergic and serotoninergic neurotransmission systems and axonal guidance has been hypothesized for the adenosine deaminase deficiency as pathologic mechanisms for the development of altered pathways involved in autistic symptoms [10]

  • There are several epilepsy syndromes in which regression of language, cognition, and behavior may lead to clinical manifestations that overlap with the behavioral syndrome of autism, such as infantile spasms, slow spike-wave discharges during sleep, and focal centrotemporal spikes

Read more

Summary

Background

Current advances in genetic technology continue to expand the list of medical conditions associated with autism. Clinicians have to identify specific autistic-related syndromes, and to provide tailored counseling. The aim of this study is to elucidate recent advances in autism research that offer important clues into pathogenetic mechanisms of syndromic autism and relevant implications for clinical practice. Genetic syndromes, and metabolic diseases account for up to 20% of autistic patients. Alterations of the neocortical excitatory/inhibitory balance and perturbations of interneurons’ development represent the most probable pathogenetic mechanisms underlying the autistic phenotype in Fragile X-Syndrome and Tuberous Sclerosis Complex. Chromosomal abnormalities and potential candidate genes are strongly implicated in the disruption of neural connections, brain growth, and synaptic/dendritic morphology. Highresolution chromosome analysis may be recommended if a specific diagnosis is suspected because of obvious dysmorphisms. Identifying cryptic chromosomal abnormalities by whole genome microarray analysis can increase the understanding of the neurobiological pathways to autism

Introduction
Metabolic Diseases
Epilepsy and Regressive Autism
Genetic Diseases Associated with Autism
Chromosomal Abnormalities
Findings
Pathogenetic Pathways
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.