Abstract

The atomic structures of solid-solid interfaces in materials are of fundamental importance for understanding the physical properties of interfacial materials, which is, however, difficult to determine both in experimental and theoretical approaches. New theoretical methodologies utilizing various global optimization algorithms and machine learning (ML) potentials have emerged in recent years, offering a promising approach to unraveling interfacial structures. In this review, we give a concise overview of state-of-the-art techniques employed in the studies of interfacial structures, e.g., ML-assisted phenomenological theory for the global search of interface structure (ML-interface). We also present a few applications of these methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.