Abstract

Direct methanol fuel cells (DMFCs) have attracted much attention due to their potential application as a power source for portable devices. Their simple construction and operation, associated with compact design, high energy density, and relatively high energy-conversion efficiency, give the DMFCs an advantage over other promising energy production technologies in terms of portability. Nowadays, research on DMFCs has received increased attention in both academics and industries. However, many challenges remain before these systems become commercial, including their costs and durability. As a key material with a high-value cost, noble metal catalysts for both the anode and cathode sides face several problems, which hinder the commercialisation of DMFCs. This paper provides a detailed comprehensive review of recent progress in the development of nanocatalysts (NCs) for the anode and cathode reactions of DMFCs, based on Platinum, Platinum-hybrid, and Platinum-free materials. Particular attention is devoted to the systematisation of published experimental results tested in DMFC devices since 2015, with an emphasis on passive DMFC systems. In addition, a dedicated section was created to include modelling/theoretical studies. Some open problems and remaining challenges are also highlighted in the final section.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.