Abstract

The advent of graphene opens up the research into two-dimensional (2D) materials, which are considered revolutionary materials. Due to its unique geometric structure, graphene exhibits a series of exotic physical and chemical properties. In addition, single-element-based 2D materials (Xenes) have garnered tremendous interest. At present, 16 kinds of Xenes (silicene, borophene, germanene, phosphorene, tellurene, etc.) have been explored, mainly distributed in the third, fourth, fifth, and sixth main groups. The current methods to prepare monolayers or few-layer 2D materials include epitaxy growth, mechanical exfoliation, and liquid phase exfoliation. Although two Xenes (aluminene and indiene) have not been synthesized due to the limitations of synthetic methods and the stability of Xenes, other Xenes have been successfully created via elaborate artificial design and synthesis. Focusing on elemental 2D materials, this review mainly summarizes the recently reported work about tuning the electronic, optical, mechanical, and chemical properties of Xenes via surface modifications, achieved using controllable approaches (doping, adsorption, strain, intercalation, phase transition, etc.) to broaden their applications in various fields, including spintronics, electronics, optoelectronics, superconducting, photovoltaics, sensors, catalysis, and biomedicines. These advances in the surface modification of Xenes have laid a theoretical and experimental foundation for the development of 2D materials and their practical applications in diverse fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.