Abstract

AbstractAmong various transition metal complexes, platinum(II) complexes are among one of the most extensively explored classes of metal complexes for supramolecular assembly, as their square‐planar molecular geometry allows axial interactions between adjacent complex molecules and access to the formation of supramolecular assemblies with the aid of noncovalent Pt(II)⋯Pt(II) interactions. In the presence of external stimuli, alkynylplatinum(II) polypyridine complexes can self‐assemble with alterations in their spectroscopic and luminescence properties. In light of their inherent advantages, including low‐energy photoexcitation, red to near‐infrared emission, large Stokes shifts, long phosphorescence lifetimes and high photostability, successful applications of alkynylplatinum(II) polypyridine complexes in the detection of biological analytes have been made possible. In this account, presented in part of the FACS Foundation Lecture, we introduce the basic concepts and our recent advances in the development of detection assays for various biomolecules based on luminescent alkynylplatinum(II) polypyridine complexes with selected examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.