Abstract
The purpose of this review was to gain a deeper understanding of tannic acid (TA) and its properties, which could be important for improving the technology of gluten-free food. TA is widely used in agriculture, food, medicine, and other fields due to its unique physiological functions (anti-tumor, anti-oxidation, antibacterial, anti-viral, etc.). It can closely interact with proteins and polysaccharides, which can significantly influence the structure, function, and nutritional properties of compounds. In this article, TA is chosen as a polyphenol model, and the structure of tannins and the degree of their extraction have been considered systematically. Prospective application of interaction between TA and common biological macromolecules have been presented. In this review, different classes of tannins are summarized. Advantages and disadvantages of different methods of extracting tannins have also been described. This review provides detailed information about the mechanisms of interaction of TA with biological macromolecules such as proteins and polysaccharides. Maize, buckwheat, rice flour and starch should be introduced as non-traditional raw materials in production of pasta for people ill with coeliac disease. Pasta dough from unconventional raw materials has non-standard rheological characteristics, and it is difficult to impart good plastic properties to it. That is why, studying the properties of tannins is necessary to improve the technology of gluten-free pasta. However, due to the different nature and composition of proteins, gluten-free foods do not have a network structure. So, they can hold neither water nor starch granules, their prepared dough is loose, with low viscosity, and is not easily moulded. That is why, the use of tannin to form a strong structure when developing a gluten-free pasta technology has become the main purpose of the research. Some potential problems of gluten-free dough processing can be solved by using new technical means. In view of this, the authors put forward the idea of using TА to form cross-links and a strong gluten-free dough structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Food Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.