Abstract
Colloidal interactions play a critical role in mineral processing, including grinding, physical separation (particularly flotation), dewatering, and tailings management. Despite great energy input in comminution to liberate valuables from gangues, hetero-coagulation between valuables and gangues would prevent the separation of valuables from gangues. On the other hand, selective coagulation/flocculation to increase the size of desired fine particles could enhance physical separation and dewatering, while dispersion is needed for fine grinding. To control the state of colloidal dispersions by creating favorable conditions, it is of paramount importance to study colloidal interactions in a relevant system and understand underlying mechanisms. This review summarizes recent advances in developing the-state-of-the-art techniques and novel methods of measuring colloidal forces, including atomic force microscope, surface force apparatus, zeta potential distribution measurement, quartz crystal microbalance with dissipation, and our recently developed integrated dynamic force apparatus. The basic principle of each technique was introduced first, followed by a summary of critical information derived for the relevant mineral processing systems. Finally, the pros and cons of each technique were discussed to emphasize the use of complementary techniques that assist in solving fundamental problems in mineral processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.