Abstract
Stimulated emission depletion (STED) and reversible saturable optical fluorescence transition (RESOLFT) microscopy are the super-resolution imaging techniques that can acquire nanoscale spatial resolution. The spatial resolution of the other far-field optical microscopic techniques is bound by diffraction limit, however, STED/RESOLFT techniques eliminate the diffraction barrier. These microscopic techniques have taken the limits of optical image resolution down to the nanometer scale and opened new paths for biomedical and nanophosphor research. In this paper, we review the recent advancements of these techniques in the field of nanoscopy using continuous wave (CW) laser sources. Further, we discuss the main limitation of the STED microscopy in terms of essential requirements of higher depletion beam power and photobleaching issues. The RESOLFT microscopic technique can be considered as an alternate technique to overcome limitations of existing STED microscopy. Moreover, the Bessel and Gaussian-Bessel beam STED microscopic techniques are also reviewed to produce deep images with faster scanning of the samples. The organic molecules as well as the fluorescent doped nanoparticles like ZnSe:Mn having characteristics of excited state absorption can be investigated using RESOLFT microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.