Abstract

Icing, frosting, and fogging are all natural phenomena in cold climates, which bring a lot of inconvenience and safety problems to our daily life and industry when formed on the infrastructures. Solar-thermal anti-icing, anti-frosting or anti-fogging surfaces have attracted a lot of interest due to their effectiveness and green ecofriendly features in comparison with the conventional mechanical, thermal, and chemical methods. This short review aims at summarizing the recent progress of solar-thermal anti-fogging/anti-icing/anti-frosting surfaces. First of all, both the fundamental of solar-thermal energy conversion and the mechanism of solar-thermal anti-fogging/anti-icing/anti-frosting are introduced. After that, recent advances in solar-thermal anti-fogging surfaces, and superhydrophobic solar-thermal anti-icing/anti-frosting surfaces are summarized according to the categories of photothermal materials. The results of our collaborative research groups in this field are highlighted in this review. In the end, through comparing those reported surfaces, we point out the bottlenecks in the existing researches of this field, and suggest the potential significant research directions in the future.

Highlights

  • fogging are all natural phenomena in cold climates

  • which bring a lot of inconvenience and safety problems to our daily life and industry when formed on the infrastructures

  • anti-fogging surfaces have attracted a lot of interest

Read more

Summary

Metasurface Tinted laminate Control

图 1 (a) 光热超材料的反射 (R)、透过 (T) 和吸收 (A) 光谱; (b) 玻璃、染色玻璃和超材料在光照下的温度时间响应; (c)—(e) 光 照下的防雾表现 (c) 玻璃、(d) 亲水玻璃和 (e) 光热超材料 [28]. 图 2 (a) 防雾表面截面图 ; (b) 不 同 CWO 质量分数的表面光谱 : 透 过 率 (T) 和 吸 收 率 (A); (c) 不 同 CWO 质量分数的表面在 1 个标准太阳光下的温度响应曲线; (d) 1 个 10 cm × 10 cm 的透明选择性光热表面 CWO 质量分数: 10%; (e), (f) 大面积样品的 户外防雾测试: (e) 普通玻璃表面和 (f) 光热玻璃表面. 如 图 3(a) 和图 3(b) 所示, 该表面由蜡烛灰 (CS), SiO2 包覆壳和聚二甲基硅氧烷 (PDMS) 组成, 其中蜡 烛灰由尺寸 30—40 nm 相互链接的碳粒组成, 是 天然超疏水材料 (静态接触角为 161°±1°), 与此同 时也是天然的光热材料. SiO2 包覆壳用于增强蜡 烛灰的机械性能 , 最后将疏水的 PDMS 连 接 到 SiO2 包覆壳上得到最终的超疏水光热表面 (PSCS). 处理后的表面接触角增加到 163°±1°, 在 1 个标准 太阳光下温升达到了 53 °C (图 3(c) 和图 3(d)). 因此, 该 PSCS 表面可以 保持干燥, 有效避免水带来的反射率下降和热质量增 加的问题, 从而减少了热损失 (图 3(e) 和图 3(f)). 不同于此层层堆叠的制备方法, Liu 等 [18] 采用 喷涂法制备了一种基于碳材料的超疏水光热表面, 如 图 3(g) 所示. 该表面通过喷涂三氯硅烷 (PFOCTS) 修饰过的碳纳米管与聚氨酯 (PU) 的混合溶液, 得 到了表面粗糙的超疏水光热涂层. 该涂层在 1 个标 准太阳光照下可在零下 30 °C 的环境中使表面温 度升高 50 °C, 同时超疏水性在被氧等离子体破 坏后, 可在太阳光照射下恢复, 具有良好的耐久性 (图 3(h))

Sunlight Fluorine segments migration
PTFE TiN
Findings
Peeling off
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call