Abstract
Silvetr and gold nanoparticles-based colorimetric sensors (Ag/Au-NPs-CSns) allow potential prospects for the development of efficient sensors owing to their unique shape- and size-dependent optical properties. In this review, recent (2020) advances in morphology-controllable synthesis, shape/size-dependent performance, sensing mechanism, challenges and prospects of Ag/Au-NPs-CSns for the detection of heavy metals are discussed. The size/shape-controlled synthesis of innovative Ag/Au-NPs-CSns is reviewed critically and the possible role of different parameters like temperature, time, pH, stabilizing/capping agents, reducing agents and concentration/nature of precursors are discussed. Then, we highlighted how the shape, size, optimum composition, functionalization, stabilizing/capping agents, surface structure and synergism influence the optical properties and sensing efficiency of Ag/Au-NPs-CSns. This review attempted to accentuate the efficiency of novel multimetallic Ag/AuNPs-CSns as compare to their monometallic counterparts and explained how the incorporation of multi-metals affects their performance. Besides, the sensing mechanisms of Ag/Au-NPs-CSns with special reference to recently published studies are discussed. Finally, challenges and prospects in the controllable-synthesis and practical applications of these sensors are studied. This mechanistic approach and timely review can be promisingly considered as a valuable reference and will help fuel new ideas for the development of novel colorimetric sensors. Highlights A review of recent advances in Ag/Au-NPs-CSns for heavy metal ions detection Morphology of Ag/Au-NPs-CSns regulate their optical properties/sensing efficiency Promising Ag/Au-NPs-CSns can be synthesized by adjusting experimental parameters Hybrid and functionalized Ag/Au-NPs-CSns have superior sensing performance Size/shape transformation, aggregation/anti- and oxidation are sensing mechanisms
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.