Abstract

To meet more application requirements, improving mechanical properties and self-healing efficiency has become the focus of current research on self-healing PU. The competitive relationship between self-healing ability and mechanical properties cannot be avoided by a single self-healing method. To address this problem, a growing number of studies have combined dynamic covalent bonding with other self-healing methods to construct the PU structure. This review summarizes recent studies on PU materials that combine typical dynamic covalent bonds with other self-healing methods. It mainly includes four parts: hydrogen bonding, metal coordination bonding, nanofillers combined with dynamic covalent bonding and multiple dynamic covalent bond bonding. The advantages and disadvantages of different self-healing methods and their significant role in improving self-healing ability and mechanical properties in PU networks are analyzed. At the same time, the possible challenges and research directions of self-healing PU materials in the future are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.