Abstract

We aim to review the most recent findings in genomics of sarcoidosis and highlight the gaps in the field. Original explorations of sarcoidosis subphenotypes, including cases associated with the World Trade Center and ocular sarcoidosis, have identified novel risk loci. Innovative gene--environment interaction studies utilizing modern analytical techniques have discovered risk loci associated with smoking and insecticide exposure. The application of whole-exome sequencing has identified genetic variants associated with persistent sarcoidosis and rare functional variations. A single epigenomics study has provided background knowledge of DNA methylation mechanisms in comparison with gene expression data. The application of machine-learning techniques has suggested new drug repositioning for the treatment of sarcoidosis. Several gene expression studies have identified prominent inflammatory pathways enriched in the affected tissue. Certainly, sarcoidosis research has recently advanced in the exploration of disease subphenotypes, utilizing novel analytical techniques, and including measures of clinical variation. Nevertheless, large-scale and diverse cohorts investigated with advanced sequencing methods, such as whole-genome and single-cell RNA sequencing, epigenomics, and meta-analysis coupled with cutting-edge analytic approaches, when employed, will broaden and translate genomics findings into clinical applications, and ultimately open venues for personalized medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call