Abstract

In the context of robotics and automation, learning from demonstration (LfD) is the paradigm in which robots acquire new skills by learning to imitate an expert. The choice of LfD over other robot learning methods is compelling when ideal behavior can be neither easily scripted (as is done in traditional robot programming) nor easily defined as an optimization problem, but can be demonstrated. While there have been multiple surveys of this field in the past, there is a need for a new one given the considerable growth in the number of publications in recent years. This review aims to provide an overview of the collection of machine-learning methods used to enable a robot to learn from and imitate a teacher. We focus on recent advancements in the field and present an updated taxonomy and characterization of existing methods. We also discuss mature and emerging application areas for LfD and highlight the significant challenges that remain to be overcome both in theory and in practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.