Abstract

Recent research carried out at the University of St Andrews and HEXIS has focussed on a novel A-site deficient perovskite: La0.20Sr0.25Ca0.45TiO3 (LSCTA-) as a potential replacement material for the Ni-based cermet. LSCTA- is a mixed ionic and electronic conductor, which exhibits a high effective electrical conductivity for this class of limited conductivity perovskite, allowing a single-phase anode ‘backbone’ to be employed and removing the challenges associated with utilisation of a structural Ni phase. Co-impregnating this ‘backbone’ with a variety of transition/platinum group metals, as well as Ce0.80Gd0.20O1.90 (CG20), produces intricately nanostructured anode materials with high electrocatalytic activity for fuel oxidation. Here we provide an overview of the first ‘all-oxide’ SOFC stack test at HEXIS, as well as an in depth exploration of the ‘powder-to-power’ development of these co-impregnated LSCTA- anodes including: ceramic processing, catalyst selection, short-term testing, characterisation by AC impedance spectroscopy and durability testing of promising candidate catalyst systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.