Abstract

Tissue engineering strategies for regenerating damaged cartilage using hydrogels have garnered significant attention due to the limited self-healing capacity of damaged cartilage tissue and the restrictions of current medical treatment methods. In particular, using human mesenchymal stem cells (hMSCs) as the cell source has shown the potential to differentiate along a chondrogenic lineage. Hydrogels, whether made of synthetic polymers, natural polymers, or combinations, are widely explored as scaffolding materials mimicking the natural cartilage environment. Based on the understanding of the importance of surface nanotopographies and mechanical stiffness, hydrogels have been presented in various forms and tested for the differentiation of hMSCs. The primary focus of this review is to provide a summary of recent advances in physically and chemically modified hydrogels promoting the chondrogenesis of hMSCs. Advances in micromachining have helped in forming surfaces with the required roughness or an array of micropillars of defined architecture. Hydrogels have been combined with various stimulants such as small peptides, growth factors, and many modified matrix elements. Creating anisotropic hydrogels mimicking the extracellular matrix of cartilage has also been reported. These studies show promising results and identify a niche for in-vitro differentiation of chondrocytes from hMSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call