Abstract

Since the last International Union of Geodesy and Geophysics (IUGG) General Assembly (1999), the predictability studies in China have made further progress during the period of 1999–2002. Firstly, three predictability sub-problems in numerical weather and climate prediction are classified, which are concerned with the maximum predictability time, the maximum prediction error, and the maximum allowable initial error, and then they are reduced into three nonlinear optimization problems. Secondly, the concepts of the nonlinear singular vector (NSV) and conditional nonlinear optimal perturbation (CNOP) are proposed, which have been utilized to study the predictability of numerical weather and climate prediction. The results suggest that the nonlinear characteristics of the motions of atmosphere and oceans can be revealed by NSV and CNOP. Thirdly, attention has also been paid to the relations between the predictability and spatial-temporal scale, and between the model predictability and the machine precision, of which the investigations disclose the importance of the spatial-temporal scale and machine precision in the study of predictability. Also the cell-to-cell mapping is adopted to analyze globally the predictability of climate, which could provide a new subject to the research workers. Furthermore, the predictability of the summer rainfall in China is investigated by using the method of correlation coefficients. The results demonstrate that the predictability of summer rainfall is different in different areas of China. Analysis of variance, which is one of the statistical methods applicable to the study of predictability, is also used to study the potential predictability of monthly mean temperature in China, of which the conclusion is that the monthly mean temperature over China is potentially predictable at a statistical significance level of 0.10. In addition, in the analysis of the predictability of the T106 objective analysis/forecasting field, the variance and the correlation coefficient are calculated to explore the distribution characteristics of the mean-square errors. Finally, the predictability of short-term climate prediction is investigated by using statistical methods or numerical simulation methods. It is demonstrated that the predictability of short-term climate in China depends not only on the region of China being investigated, but also on the time scale and the atmospheric internal dynamical process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call