Abstract

Noninvasive and nondestructive techniques for monitoring and manipulating cells or biomolecules are essential for understanding biological processes. Optical methodologies have been used for the noninvasive and nondestructive monitoring of intracellular molecules and manipulation of cellular activities to elucidate the localization and interactions of these biomolecules. Since the pioneering work of Ashkin, optical trapping has been used to study cellular elasticity and mechanical characteristics of intracellular molecules. In recent years, there has been a substantial amount of research on the optical manipulation of nanometer-sized objects, including the manipulation of the assembly of nanomaterials and the enhancement of optical forces with optical resonance effects. In the study of biomolecular manipulation by optical forces, the functions and roles of biomolecules have been clarified by analyzing the changes in cellular functions induced by manipulation. In this review, we focus on recent studies on optical trapping for the manipulation of living cells or biomolecules and introduce techniques for the manipulation of cellular functions using optical forces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call