Abstract

Since seawater is one of the most abundant resources on earth, seawater electrolysis is becoming increasingly attractive for clean energy/hydrogen production. Although significant progress has been made recently, it is still challenging to obtain bifunctional electrocatalysts with high catalytic activity and durability suitable for seawater electrolysis because of the scarcity of precious metals and inadequate state-of-the-art materials for the overall reaction. The development of high-performance bifunctional electrocatalysts is crucial to the commercialization of overall seawater electrolysis and in this review, the mechanism and challenges of seawater electrolysis are introduced. Optimization strategies for different types of non-noble-metal-based electrocatalysts including structural regulation, interface regulation, doping regulation, in situ assembly, alloying, and amorphization are summarized to elucidate the relationship among composition, structure, and properties. Finally, the challenge and prospective for future development of non-noble-metal-based bifunctional catalysts are discussed. This paper aims at providing guidance and insights into the rational design of highly efficient catalytic materials for practical seawater splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.