Abstract

Sintering flue gas contains significant amounts of harmful gases, such as carbon monoxide and nitrogen oxides (NOx), which pose severe threats to the ecological environment and human health. Selective catalytic reduction (SCR) technology is widely employed for the removal of nitrogen oxides, with copper-cerium-based bimetallic catalysts and their derivatives demonstrating excellent catalytic efficiency in SCR reactions, primarily due to the significant synergistic effect between copper and cerium. This paper summarizes the main factors affecting the catalytic performance of Cu-Ce-based bimetallic catalysts and their derivatives in the selective catalytic reduction of ammonia and carbon monoxide. Key considerations include various preparation methods, doping of active components, and the effects of loading catalysts on different supports. This paper also analyzes the influence of surface oxygen vacancies, redox capacity, acidity, and specific surface area on catalytic performance. Additionally, the anti-poisoning performance and reaction mechanisms of the catalysts are discussed. Finally, the paper proposes strategies for designing high-activity and high-stability catalysts, considering the development prospects and challenges of Cu-Ce-based bimetallic catalysts and their derivatives, with the aim of providing theoretical guidance for optimizing Cu-Ce-based catalysts and promoting their industrial applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.