Abstract

Near‐β titanium alloys are used as promising structural materials for aerospace, biomedical, and other advanced applications due to their excellent combination of high specific strength and superior corrosion resistance. Precise control of the microstructure and mechanical properties through thermomechanical processing and heat treatment is paramount for exploiting the full potential of these alloys. This review article provides a comprehensive and critical assessment of the state‐of‐the‐art research on the microstructure evolution, deformation mechanisms, and oxidation behavior of near‐β titanium alloys. Furthermore, the challenges and emerging opportunities in the development of near‐β titanium alloys have also been identified, ranging from alloy design and processing optimization to multiscale characterization and integrated computational materials engineering. This review article provides a timely and comprehensive roadmap for the research and development of near‐β titanium alloys, paving the way for unlocking their full potential in critical industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.