Abstract

Cardiovascular diseases (CVDs) are among the world’s widely affected disorders, including ischemia and stroke. Acute Myocardial ischemia (AMI) is a deadly disease caused by irreversible damage to the left ventricular heart tissues. The thromboembolic plaque stops the oxygen supply to the main blood vessels and ventricles. During chronic inflammation, myocardial infarction and free radicals damage stable myocardium, smooth muscles cell, and epithelial cells caused by outer membrane loss and ventricular wall smoothing and dilation. Specially constructed scaffolds made of biological and nanoparticles have been created to shield the left ventricle from further injury and recover ischemic endothelial cells. Preclinical experiments have demonstrated that scaffolds containing growth factors and cells will regenerate ischemic tissue into a stable pericardium in good working order. Various medicinal approaches that treat cardiovascular disease conditions at different stages are discussed in this review article, with biomaterials receiving special attention. This review further addresses the manipulation and manufacturing of biomedical implantable devices using nanomedicine methods and drug delivery principles. The use of graphene and exosomal nanovesicle in cardiovascular therapeutics recently progressed in research studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call