Abstract
Tramadol is a centrally-acting analgesic used for treating moderate to severe acute and chronic pain. Pain is an unpleasant sensation that occurs most commonly as a result of tissue injury. Tramadol possesses agonist actions at the μ-opioid receptor and effects reuptake at the noradrenergic and serotonergic systems. In the last years, several analytical procedures have been published in the literature for the determination of tramadol from pharmaceutical formulations and biological matrices. Electrochemical methods have attracted tremendous attention for the quantification of this drug owing to their demonstrated potential for quick response, real-time measurements, elevated selectivity and sensitivity. In this review, we highlighted the recent advances and applications of nanomaterials-based electrochemical sensors for the analysis and detection of tramadol, which is extremely important for the indication of effective diagnoses and for quality control analyses in order to protect human health. Also, the main challenges in developing nanomaterials-based electrochemical sensors for the determination of tramadol will be discussed. At last, this review offers prospects for the future research and development needed for modified electrode sensing technology for the detection of tramadol.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.