Abstract

Electrochemical conversion of carbon dioxide (CO2) into valuable chemicals and fuels is an emerging solution enabling a carbon-neutral energy cycle for sustainable development. Two-dimensional (2D) metal-based catalysts for CO2 reduction reaction (CO2RR) with well-dispersed active sites, high surface area, controllable morphology, and remarkable tunability have recently attracted enormous attention from scholars. Well-defined 2D materials can be tailored to disperse and increase active sites, enhance conductivity, and construct single-atom catalysts (SACs) that can be exploited for electrocatalytic CO2 conversion. This review first addresses the brief fundamental scientific principles of CO2RR for nanoengineering 2D materials. Furthermore, we discuss and highlight the progress of 2D metal-based electrocatalysts for CO2RR and get insights into the advantages of electrocatalyst types with specific analyses of current density and Faradaic efficiency. Finally, the remaining challenges and prospects of future research will also be presented in the field to provide rational design proposals for developing durable and efficient metal-based electrocatalysts for CO2RR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call