Abstract
We review recent advances in nanoelectrode architecture for photochemical hydrogen production by water splitting. Today, solar energy is recognized as one of the most important renewable energy sources that humanity must harness in addressing the future energy sustainability issues. Of the different strategies for solar energy conversion, solar fuel or solar hydrogen conversion is attractive in that one can store the harvested energy in chemical bonds. Recent work in this field has focused on the use of nanoarchitecture designs that aim to increase photocatalytic activity, enable visible light harvesting, and ensure chemical stability and cost-effectiveness. In this perspective review, we focus on selected work in the following areas: (1) oxide semiconductor nanoelectrodes; (2) sensitization of semiconductor nanowire/nanotube arrays; (3) bioinorganic conjugate architectures; and (4) hybrid nanoarchitectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.