Abstract
The last decade has witnessed a flourish in 2D materials including graphene and transition metal dichalcogenides (TMDs) as atomic-scale Legos. Artificial moiré superlattices via stacking 2D materials with a twist angle and/or a lattice mismatch have recently become a fertile playground exhibiting a plethora of emergent properties beyond their building blocks. These rich quantum phenomena stem from their nontrivial electronic structures that are effectively tuned by the moiré periodicity. Modern angle-resolved photoemission spectroscopy (ARPES) can directly visualize electronic structures with decent momentum, energy, and spatial resolution, thus can provide enlightening insights into fundamental physics in moiré superlattice systems and guides for designing novel devices. In this review, first, a brief introduction is given on advanced ARPES techniques and basic ideas of band structures in a moiré superlattice system. Then ARPES research results of various moiré superlattice systems are highlighted, including graphene on substrates with small lattice mismatches, twisted graphene/TMD moiré systems, and high-order moiré superlattice systems. Finally, it discusses important questions that remain open, challenges in current experimental investigations, and presents an outlook on this field of research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.