Abstract
Since the introduction of the term “nanolaminate” in the mid-1990s, considerable research activities on metallic/ceramic nanolaminates (MCN) have been conducted. Incorporating ceramics with high hardness and high melting point together with high ductile metals can improve their thermomechanical behavior in corrosive environments. A great number of researchers have reported that MCNs exhibit outstanding thermomechanical properties compared with the constituent layers and bulk material, which is attributed to the atomic structure and high density of the interfaces. This article provides a review of recent advances in modeling of the mechanical behavior of MCN composites, with focus on Nb/NbC and Ti/TiN multilayer composites. The main strengthening mechanisms of MCNs, based on the layer thickness, the interface structure, and the interaction of threading dislocations with the interface as well as dislocations nucleation from the interface, are reviewed, and recently, obtained results from molecular dynamics simulations, along with these findings, are presented. Moreover, MD-based flow surfaces for use in large-scale continuum models are reviewed in connection with results from MD of MCNs under various mechanical loading conditions, including uniaxial and biaxial loadings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.