Abstract

SummaryLayered metallic transition metal dichalcogenides (MTMDs) exhibit distinctive electrical and catalytic properties to drive basal plane activity, and, therefore, they have emerged as promising alternative electrocatalysts for sustainable hydrogen evolution reactions (HERs). A key challenge for realizing MTMDs-based electrocatalysts is the controllable and scalable synthesis of high-quality MTMDs and the development of engineering strategies that allow tuning their electronic structures. However, the lack of a method for the direct synthesis of MTMDs retaining the structural stability limits optimizing the structural design for the next generation of robust electrocatalysts. In this review, we highlight recent advances in the synthesis of MTMDs comprising groups VB and VIB and various routes for structural engineering to enhance the HER catalytic performance. Furthermore, we provide insight into the potential future directions and the development of MTMDs with high durability as electrocatalysts to generate green hydrogen through water-splitting technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.